808,800 research outputs found

    Synthesising Strategy Improvement and Recursive Algorithms for Solving 2.5 Player Parity Games

    Get PDF
    2.5 player parity games combine the challenges posed by 2.5 player reachability games and the qualitative analysis of parity games. These two types of problems are best approached with different types of algorithms: strategy improvement algorithms for 2.5 player reachability games and recursive algorithms for the qualitative analysis of parity games. We present a method that - in contrast to existing techniques - tackles both aspects with the best suited approach and works exclusively on the 2.5 player game itself. The resulting technique is powerful enough to handle games with several million states

    Discrete--time ratchets, the Fokker--Planck equation and Parrondo's paradox

    Get PDF
    Parrondo's games manifest the apparent paradox where losing strategies can be combined to win and have generated significant multidisciplinary interest in the literature. Here we review two recent approaches, based on the Fokker-Planck equation, that rigorously establish the connection between Parrondo's games and a physical model known as the flashing Brownian ratchet. This gives rise to a new set of Parrondo's games, of which the original games are a special case. For the first time, we perform a complete analysis of the new games via a discrete-time Markov chain (DTMC) analysis, producing winning rate equations and an exploration of the parameter space where the paradoxical behaviour occurs.Comment: 17 pages, 5 figure

    Navigating the Topology of 2x2 Games: An Introductory Note on Payoff Families, Normalization, and Natural Order

    Full text link
    The Robinson-Goforth topology of swaps in adjoining payoffs elegantly arranges 2x2 ordinal games in accordance with important properties including symmetry, number of dominant strategies and Nash Equilibria, and alignment of interests. Adding payoff families based on Nash Equilibria illustrates an additional aspect of this order and aids visualization of the topology. Making ties through half-swaps not only creates simpler games within the topology, but, in reverse, breaking ties shows the evolution of preferences, yielding a natural ordering for the topology of 2x2 games with ties. An ordinal game not only represents an equivalence class of games with real values, but also a discrete equivalent of the normalized version of those games. The topology provides coordinates which could be used to identify related games in a semantic web ontology and facilitate comparative analysis of agent-based simulations and other research in game theory, as well as charting relationships and potential moves between games as a tool for institutional analysis and design.Comment: 8 pages including 4 figures in text and 4 plate

    Automated analysis of weighted voting games

    No full text
    Weighted voting games (WVGs) are an important mechanism for modeling scenarios where a group of agents must reach agreement on some issue over which they have different preferences. However, for such games to be effective, they must be well designed. Thus, a key concern for a mechanism designer is to structure games so that they have certain desirable properties. In this context, two such properties are PROPER and STRONG. A game is PROPER if for every coalition that is winning, its complement is not. A game is STRONG if for every coalition that is losing, its complement is not. In most cases, a mechanism designer wants games that are both PROPER and STRONG. To this end, we first show that the problem of determining whether a game is PROPER or STRONG is, in general, NP-hard. Then we determine those conditions (that can be evaluated in polynomial time) under which a given WVG is PROPER and those under which it is STRONG. Finally, for the general NP-hard case, we discuss two different approaches for overcoming the complexity: a deterministic approximation scheme and a randomized approximation method
    corecore